

Getting Started with Roo

Getting Started with Roo

Josh Long and Steve Mayzak

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Getting Started with Roo
by Josh Long and Steve Mayzak

Copyright © 2011 Josh Long and Steve Mayzak. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Jasmine Perez
Proofreader: O’Reilly Production Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Getting Started with Roo, the image of the common tree kangaroo, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30790-5

[LSI]

1312551620

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . vii

1. Your First Intrepid Hops … err, Steps . 1
The Pitch 1

Spring, the Most Productive Way to Build Java Applications 1
A Worthy Alternative 2
Spring Roo Means No Compromises 3

Getting Started 4
The Tooling 4
Our first Spring Roo application 6
Database Reverse Engineering 15
Riddle Me This 16
On The (Active) Record 17

Persistence with Spring Data Graph 17

2. Spring Roo on the Web . 23
Spring MVC 23
Taking Our Application for a Spin 25
“You Win … a Braaand Neeew Web Application!” 26
Scaffolding 28

How Spring Roo Builds the Scaffolding 31
Spring WebFlow 34

Integrating Roo with other Web Frameworks 36
GWT 37
Vaadin 40
Where to go from Here 42

3. From Prototype to Production . 43
Logging 43
Security 43
Testing 45

v

Conclusion 47

vi | Table of Contents

Preface

This is my first book with O’Reilly, and I’m very grateful for their help and encour-
agement. Their editorial team is first class, and efficient. It was great working with you.

I, like many of you, have been using Spring for a long, long time. I wasn’t initially
convinced I needed Spring Roo (to be honest). It wasn’t until I sat with Ben Alex and
Stefan Schmidt about a year ago and really started looking at it that I realized it was
simply too valuable to ignore. There’s a lot of power here and what really struck me
was how that power didn’t imply compromise: you can always go home again, and
assert full control over your application. Eventually, you stop worrying about that at
all, and just let Spring Roo do the work. One adage you hear a lot in the devops/build
tool world is that, “your application is not a unique snowflake.” That’s true of infra-
structure code, too. Spring Roo helps you bootstrap all that tedious infrastructure code,
if you let it. It’s like fast-forwarding a movie to the fun parts, quicker. It almost feels
like cheating!

I want to thank my coauthor, Steve Mayzak, for all his help. We did this book and
prepared a talk for OSCON, all in a very short space. It was a three-person job, but he
took up the slack and got us to the finish line. Amazing work and I definitely owe you,
kind sir.

I want to thank my wife, Richelle. She’s learned, I think, that I am not a multitasking
husband. Every now and then, I disappear into our home office and come back with a
beard a week later (and, sometimes, some useful byproduct like a chapter or working
code). It takes a patient, saintly woman to suffer that; she has, at every turn. Thanks,
honey!

I want to thank Neo4J and Vaadin for their extra help on this book. Roo’s powerful
add-on architecture makes it very easy to look into new technologies because the cost
to invest is so low, and iteration is very quick. Neo4j and Vaadin are two technologies
that we cover in this book, but there are numerous other examples in the addon eco-
system, and I hope—if nothing else—that you’ll explore.

Finally, thanks are owed to the Roo team, including Ben Alex, Stefan Schmidt, Alan
Stewart, James Tyrrell, and Andrew Swan. The technology’s wonderful, and it would

vii

not be but for their incredible dedication and hard work. Now, if you guys have any
ideas about a Roo-Book-Preface-Writer add-on, I’d love to hear it...

—Josh Long

This being my first book, I looked to my fellow author, Josh, for help and guidance.
Without him this book wouldn't be what it is so my heartfelt thanks goes out to him
first and foremost.

My road to Spring Roo was not a direct one. Being a serious Grails fan, when I first
heard about Spring Roo, I brushed it off as yet another RAD framework that couldn't
possibly stand up to the mighty Grails! But, over time I was worn down by watching
demo's, reading blogs about it and eventually trying it out myself. The first thing that
impressed me was the Roo Shell, what a powerful tool. My first app with Roo was built
with no manual, using only the hint feature in the shell to guide me. Before you knew
it, I had a full blown Spring app up and running with UI, Validation and more. I was
quickly becoming a fan. Long story short, I am now a huge Spring Roo fan and that is
mostly what motivated me to write this book with Josh.

If you have followed a similar path to me, you will no doubt find a lot of power in with
Spring Roo, just like I have. This short introduction to it will hopefully motivate you
to dive deeper and possibly become an active contributor on the project. After all, a lot
of the power in Spring Roo comes from addons and yours would be warmly welcomed.
I happen to love the GWT and Vaadin addons but I'm more excited to see what comes
next.

Before you move on, a little mush. I'd really like to thank my wife Jennifer and my
daughter Makenzee for putting up with my hectic schedule lately. Coming up for air
and spending time with them really makes it all worth it. "In the Face!!" girls! I know I
said it before but seriously, Josh Long taught me a lot about writing, finding your voice
and just getting it done so Josh, I owe ya and thanks.

—Steve Mayzak

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-

viii | Preface

jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Getting Started with Roo by Josh Long and
Steve Mayzak (O’Reilly). Copyright 2011 Josh Long and Steve Mayzak,
978-1-449-30790-5.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

Preface | ix

mailto:permissions@oreilly.com

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449307905

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily search over
7,500 technology and creative reference books and videos to find the answers you need
quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

Acknowledgments
The authors would like to thank the Spring Roo team for such a wonderful project.
We’d also like to thank Neo Technology and, in particular, Michael Hunger, whose
contributions proved invaluable in the discussion of the Neo4j add-on.

x | Preface

http://oreilly.com/catalog/9781449307905
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com

CHAPTER 1

Your First Intrepid Hops … err, Steps

Welcome! If you’re reading this, then you’ve undoubtedly heard about Spring Roo from
a friend or colleague, or perhaps you read about it online or saw a presentation about
it. “Well, that’s a presumptuous way to start a book!,” I can imagine you thinking. I
would, were I in your position.

But we’ve only just begun. In fact, I suspect that most people that read this book will
come to it having been introduced to it from some other resource. Sure, most people
aren’t likely to just pick up a book accidentally, you might contend. But I’m willing to
bet you picked this book up having heard quite a bit about Spring Roo a priori. This
will be a common refrain: “My colleague was raving about Spring Roo and I just want
to learn more …”

This is natural. Most people—having heard claims of Roo’s vaunted productivity and
rapid turnaround times—will naturally assume they’ve not been told the whole story,
that surely there must be a catch, even if what they heard was fantastic. It’s only natural
that one might attempt to investigate further, to clarify. One might seek trustworthy
resources to light the way. You know O’Reilly—a good publisher, one that’s never led
you astray before.

And so, here we are.

You’ve got doubts. “If it sounds too good to be true…” But let me stop you right there!
Spring Roo does sound too good to be true, but—as you’ll see in short order—it’s not.

The Pitch

Spring, the Most Productive Way to Build Java Applications
Spring Roo is a dynamic, domain-driven development framework from SpringSource,
the makers of the insanely popular Spring framework, the de facto standard in enter-
prise Java. The Spring framework simplifies and expedites application development
through a three-pronged approach: it enable services on plain-old-Java-objects (PO-

1

JOs) declaratively and transparently through dependency injection and aspect-oriented
programming, and—where functionality can’t be achieved effectively through those
channels alone—it provides the simplest, cleanest abstractions and APIs under the sun
to solve problems and to simplify existing, often verbose APIs.

If Spring’s so popular, and so productive, then surely Roo is redundant? After all, what
could it possibly hope to add? “Spring’s the easiest way to work with Java today,” you
think, “you just said it yourself!”

Spring is no doubt the most proficient way to work with Java, but the current thinking
strongly supports the conclusion that the next barrier to enhancing productivity on the
JMV is the Java language itself.

This too is not news.

A Worthy Alternative
SpringSource is also the custodian of the open-source Grails project, which has similar
goals as Spring Roo. Grails is a highly productive web development framework built
on the Groovy language. The framework’s built on top of Spring, but provides a work-
flow that’s far more like Ruby on Rails. Part of the productivity gains to be had in using
this framework—part of its power—is that you can exploit the Groovy language’s dy-
namism and conciseness. Groovy’s a very dynamic language. It supports meta pro-
gramming and the creation of exotic domain-specific languages. These features alone
can pack quite a punch! They let the Grails developer specify more in far fewer lines of
code than a Java developer could hope to achieve.

For some people, Grails is a compelling option, and the goal of Roo isn’t to take away
from that. For some, however, Grails simply isn't an option. Perhaps they can’t use
Groovy in their environment, or they don’t want to make the large jump to Grails,
feeling perfectly comfortable with their existing Spring and Java skills.

Figure 1-1. Pyramid of opinionation

2 | Chapter 1: Your First Intrepid Hops … err, Steps

Spring Roo Means No Compromises
Spring Roo is built using standard Java. You object, “But you just said … !” (I’m getting
to that, hold on!) Spring Roo uses standard Java and Spring, but during development
time, the Spring Roo shell watches you work, helping out as possible and required.
Think of Spring Roo as being the ultimate pair-programming buddy, or the most ad-
vanced code completion you’ve ever seen.

As an example of this power, suppose you’re in the middle of editing a JPA entity in a
Spring Roo project, and adding a field of interest—perhaps a dateOfBirth field to a
Customer entity. As soon as you’ve finished typing out the field definition, Spring Roo
automatically jumps in and adds a corresponding accessor and mutator pair for that
field to a shadow class definition in the background. Similarly, it will implement a
toString() definition (reflecting the fields added) if one does not already exist, and it
will implement an equals() method following the same criteria. This assistance isn’t a
one shot, either; it’s intelligent. If you update the field, the accessor and mutator are
updated as well as the equals and toString methods. If you add an equals method to
the JPA entity, the shadow definition is removed, delegating to your implementation
instead. So, this shadow class definition is kept in sync, responding to your changes,
but it does not get in your way. It defers to your will in all cases.

What is this shadow definition you ask? Well, it’s an AspectJ Inter Type Declaration
(ITD) that Spring Roo maintains in the background. When your application compiles,
the ITD is merged with the Java code, creating one class that has both the field you
typed in, as well as the automatically generated accessor and mutator pair, a correct
equals() implementation, and a correct toString() implementation. So, you write Java
code, and Spring Roo augments the Java code with AspectJ Inter-Type Declarations
(ITDs). You should never need to modify these ITD definitions. However, if you do
decide to make modifications, do so at your own peril, as Spring Roo reserves the right
to remove or modify them at will.

So, you get Java, but you don’t have to pay the cost of writing all that Java. For every
line you write, Spring Roo will happily write any number of other boilerplate lines to
relieve you of the burden. Because it is just code-generated Java and Spring, and nothing
else, it’s as performant, well-written, and nicely architected as possible. Spring Roo is
opinionated, but it always defers to you first.

Indeed, Spring Roo will never do anything unless you explicitly ask for it. It’s entirely
opt-in—there’s no need to spend time undoing Spring Roo’s decisions. In the above
example, we could bring Spring Roo into the project by explicitly directing it to do
something for us from the shell, or by using compile-time retention-only annotations
on our classes. If we did that, Spring Roo will monitor our workspace, using the an-
notations as a cue to intercede on our behalf, working in tandem with you in a back-
ground shadow definition.

Spring Roo’s very conducive to round tripping because of the aforementioned intelli-
gence in the code generation. It’s possible to build your application entirely using Spring

The Pitch | 3

Roo. However, it may be that you eventually need to take your application out of Spring
Roo’s sweet spot. Perhaps you’ve simply gotten 90% of your Spring application done,
and want to take it the last 10% yourself. Here, too, Roo is different. You can completely
remove Spring Roo from your application using push-in refactoring, yielding a generic
Spring and Java-only web application that looks exactly as if you’d written it yourself
and behaves exactly as it did when Spring Roo was managing its development.

This brings us around to the final piece of the puzzle: the development environment.
After all, “refactoring” connotes IDEs, tooling, and Java development. And well it
should! You already know that Spring Roo’s a shell that sits and monitors your code
as you work, helping out wherever it can, passively, but what about these ITDs? The
ITDs that it creates are not valid Java—they comply with the AspectJ language and
can’t be compiled directly using javac. This is an easier problem to overcome than you
might imagine. First, both Eclipse (in conjunction with the AspectJ Development Tool-
kit (ADJT) which is bundled with Eclipse and with SpringSource Tool Suite) as well as
IntelliJ IDEA support the ITD format. As a result, when you work with Spring Roo
projects, you still have access to code completion and to the refactoring support you’d
expect. Those shadow definition accessors and mutators we created earlier will still
show up in the code completion prompt in your favorite IDE. Additionally, every Spring
Roo project ships with a correctly configured Maven build that automatically processes
the code at compile time, so everything builds correctly.

Getting Started

The Tooling
Spring Roo is based on the sophisticated interplay between several moving parts. To
do its work, Spring Roo needs to play a role during your development, and it must be
there to help during compilation. This means you need a correctly configured devel-
opment tool, and a correctly configured build process and test environment, beyond
Spring Roo itself. This, as it turns out, is pretty easy to fix. In this section, we’ll set up
the SpringSource Tool Suite (STS), a free development environment from SpringSource,
based on Eclipse. The SpringSource Tool Suite’s got lots of extra features that makes
working with Spring and the sister projects dead simple. Beyond being a particularly
nice environment for Spring development, it’s also loaded to the gills with conveniences
and useful-to-have packages. SpringSource Tool Suite always follows the main releases
of Eclipse pretty closely, but integrates numerous plugins that can be a pain to set up
independently, but that most people have to set up, anyway, like the Maven M2Eclipse
plugin, or plugins for various source-code management options that aren’t included by
default. It is effectively a subset of the Eclipse IDE for Java EE Developers, with a large
superset of functionality integrated to reflect the realities of modern day enterprise Java
development. We’ll use it throughout the book because it represents the path of least
resistance and it’s a very capable choice, as well!

4 | Chapter 1: Your First Intrepid Hops … err, Steps

Because Spring Roo takes away so much of the boilerplate code, it is possible to develop
Spring Roo applications using only a text editor and the Roo shell running in the back-
ground. Of course, we wouldn’t recommend it, but you could! Users of IntelliJ will be
happy to know that the latest version of IntelliJ IDEA (the premium version) also sup-
ports Spring Roo development.

Let’s first obtain the SpringSource Tool Suite:

1. Go to http://www.springsource.com/developer/sts, and then click on “Download
STS,” on the bottom right (Figure 1-2).

2. Install the distribution appropriate to your environment: there are builds for OSX
(both Carbon and Cocoa, 32 and 64 bit), Linux, and Windows (Figure 1-3).

3. Once installed, you’ll have everything you need to be productive, quickly!

Figure 1-2. STS download page

Figure 1-3. Layout of STS folder

Getting Started | 5

http://www.springsource.com/developer/sts

By default, the SpringSource Tool Suite comes integrated with Maven, Spring Roo, and
the Developer Edition of SpringSource’s tcServer. SpringSource’s tcServer is a hard-
ened, more robust distribution of the leading Apache Tomcat web server. The Devel-
oper Edition also includes integrated monitoring and analysis of your application in a
package called Spring Insight, which lets you dissect the performance of your running
Spring applications at fine granularity.

Our first Spring Roo application
Let’s dig in by building something simple—you know, to kick the tires a bit.

Building a CRM is a rite of passage for every application developer today. We’ve all
written one at some point or another. If pressed, we suspect most developers would
admit to having done it—at least once (in college, perhaps? You don’t have to admit it
aloud. You were young. It was a warm summer evening … the moon was full … and
your awesome new startup (TM) needed a way to manage customer data. Totally cool.
No worries. We won’t judge.)

Now that you’ve got SpringSource Tool Suite installed, fire it up, select a workspace,
and then go to File > New > Spring Roo Project (Figure 1-4).

Figure 1-4. Opening a new Roo Project

The dialog’s a bit “busy,” but you don’t need to worry about most of it. This wizard
simply dumps its inputs into a command line invocation, which you could do directly

6 | Chapter 1: Your First Intrepid Hops … err, Steps

as well. Only fill out the first two fields—the rest you can leave as the defaults for the
large majority of the time.

Figure 1-5. Creating a new Roo Project

Click “Next,” and then click “Finish.” After a flash of activity, this will dump you into
the Spring Source Tool Suite with a fresh Spring project, based on Maven.

Getting Started | 7

Figure 1-6. Spring Source Tool Suite with a fresh Roo Project

As you examine the workspace, you can see there’s a Roo Shell at the bottom of the
screen. On the left is your freshly created project. First thing that you’ll notice is that
it’s got a simple directory structure that confirms with the directory structure used in
Maven builds. This project is a Maven project.

Directory Description

src/main/java Where your Java code is to be stored. The code in this directory are to be included in your final build artifact.

src/main/resources Where things that should be reference-able from the root of the classpath should be stored. This includes
META-INF folders and other non-.class files that you intend to be bundled with the final archive artifact.

src/test/java Where your Java-based test code lives. This code will not be in the final build archive, but it will be
evaluated before your code’s built.

src/test/resources This serves the same role as the src/main/resources folder, except it exists only while the unit test code
in src/test/java is being evaluated.

Maven projects defined their dependencies in a file called pom.xml that lives at the root
of the project. Dependencies defined in pom.xml are automatically synchronized with
the Eclipse project as classpath dependencies (you can inspect them in the project
properties dialog or simply click on the “Maven Dependencies” Eclipse Classpath
Container) thanks to the M2Eclipse plugin which comes bundled with SpringSource
Tool Suite out of the box. As you enable features with Spring Roo, it will modify your
pom.xml file and add dependencies as required. This is all automatic, and behind the
scenes. The Maven file already represents a sophisticated build. A fresh Roo project

8 | Chapter 1: Your First Intrepid Hops … err, Steps

already has JUnit, the correct and latest versions of Spring, AspectJ, logging, and the
latest servlet APIs. Not bad! We’ll revisit this pom.xml as we build our application, so
let’s get back to building our CRM.

Spring Roo applications are domain driven, everything you do stems from your domain
objects, your entity objects. You describe your domain objects to Spring Roo and it will
handle building persistence code (using JPA 2.0), web application code to manipulate
those entities, and much more.

Don’t take my word for it, though. If you ever have a question, simply ask Spring Roo!
Sometimes knowing that there is an answer is as good as knowing the answer. If you’re
ever in doubt as to what Spring Roo can help you achieve, type “help,” and then hit
Enter. Spring Roo will show all the commands that it can respond to. Similarly, if you
ever have a doubt as to how to proceed, ask Roo by typing “hint” on the shell. Let’s
do so:

Welcome to Spring Roo. For assistance press CTRL+SPACE or type "hint" then hit ENTER.

roo> hint
Roo requires the installation of a JPA provider and associated database.
Type 'persistence setup' and then hit CTRL+SPACE three times.
We suggest you type 'H' then CTRL+SPACE to complete "HIBERNATE".
After the --provider, press CTRL+SPACE twice for database choices.
For testing purposes, type (or CTRL+SPACE) HYPERSONIC_IN_MEMORY.
If you press CTRL+SPACE again, you'll see there are no more options.
As such, you're ready to press ENTER to execute the command.
Once JPA is installed, type 'hint' and ENTER for the next suggestion.
roo>

See? Everything’s about the domain objects—it wants you to set up the persistence
infrastructure. So, oblige the shell—type in “persistence setup,” and then type CTRL
+ SPACE. If you’re using Roo from the shell inside of SpringSource Tool Suite, then
the shell can offer you autocompletion using the same key commands as you’d use in
the Java code editor. On a standard operating system shell, you’d use TAB, instead,
just as you would to autocomplete commands in Bash, for example.

The code completion for the persistence setup command offers two options, both of
which are required—one for --database, and one for --provider. Any code completion
options that you get when you type CTRL + SPACE are required. Once you’ve selected
a required code completion (like “persistence setup --database”), type CTRL +
SPACE again to see if Roo has suggested values for that option. In this case, there are
several different suggested values for --database. For expedience, I recommend you
choose “H2_IN_MEMORY.” Hit CTRL + SPACE again, and the only remaining, re-
quired option (“--provider”), will be added to the command line. Type CTRL + SPACE
again to get suggested values for the “--provider” option. Again, there are several op-
tions here, as well. One well-known option is “HIBERNATE” and unless you have a
preference, go ahead and select it.

Getting Started | 9

Often, commands may have optional arguments that you can use to fine tune the re-
sults. To see the optional arguments for any command, type “--,” and then type CTRL
+ TAB to see a full list of possibilities. Hit Enter.

The shell will flash and you’ll see telltale signs that Roo has added several new de-
pendencies to your pom.xml in service of your request, including Hibernate, the Hiber-
nate JPA 2.0 implementation, Commons Pool, Commons DBCP, the Hibernate JSR
303 (Java Bean Validation) implementation, and several Spring dependencies, includ-
ing the Spring JDBC and transaction support. It’s also added a JPA persistence entity
information file (src/main/resources/META-INF/persistence.xml), as well as Spring ap-
plication context (in src/main/resources/META-INF/spring/applicationContext.xml).
Finally, the Roo command has added a repository to the Maven pom.xml where new
dependencies can be found.

Sure, the narrative of these last few paragraphs has taken more than a few minutes of
your life, but the code—from nothing, to this point, has taken an almost trivial amount
of effort. Let’s keep rolling and build our model.

The model is simple enough to be approachable, but complex enough that we can see
how Spring Roo handles common scenarios. We won’t reprint all the Roo commands
here, just enough so that you can see how to begin—the rest are easy to piece together.

Figure 1-7. The ER diagram for our domain model

Roo supports a few different workflows when building your domain objects using JPA.
For greenfield domains, you can declaratively build your entities using the Spring Roo

10 | Chapter 1: Your First Intrepid Hops … err, Steps

command line. We’ll build the model above using this approach. You should know
that Spring Roo also supports reverse engineering existing domain models from a da-
tabase (a feature called “database reverse engineering,” commonly abbreviated as
“DBRE”) and generating the appropriate JPA entities. We’ll look at this approach
shortly. Finally, there’s no reason you can’t mix ’n match these workflows: perhaps
you will bootstrap your Spring Roo application using DBRE, but then use Spring Roo
to maintain and evolve those entities.

As we are working, Roo is keeping track of our commands and writing
them to a log at the root of the project in a file called log.roo which you
can refer to anytime you want. Naturally, you can also save off the com-
mands into a file and run them on the shell, effectively replaying your
commands. This is, among other things, a very convenient way to boot-
strap new projects.

We’re going to tell you how to do this, this time, but remember, long
after you’ve finished reading this tidy, tiny tome on Spring Roo, you
may occasionally find that you’re confused on the precise syntax or
command options. Again, “hint” is your best friend here. It’ll guide the
way.

To create an entity in Spring Roo, simply type “ent,” and then hit CTRL + TAB. It’ll
auto-complete the command for you, filling in “entity” as well as the first and only
required option, “--class.” Here you need to specify a class to use.

Recall that the first step of the process was to fill out the Spring Roo dialog, specifying
a Project Name and a Top Level Package Name. The Top Level Package Name is the
root package of your application. For instance, you might have a package,
com.crmco.crm, that prefixes all parts of your application; the domain model lives in
com.crmco.crm.model, the web-tier specific code lives in com.crmco.crm.web, etc. Roo
seizes upon this convention and enshrines it in the idea of the Top Level Package Name.
You can use the tilde character (“~”) as shorthand for the Top Level Package Name.
It’ll be automatically replaced with the appropriate value whenever it’s referenced, in
very much the same way as the tilde character is commonly substituted for the $HOME
environment variable on Unixes.

So, for our Customer entity, simply specify “~.model.Customer” as the value for the --
class option, and Roo will create a new JPA entity class com.crmco.crm.model.Customer.

Hit Enter and Roo will list the files that it has changed or created in response to your
command:

roo> entity --class ~.model.Customer
Created SRC_MAIN_JAVA/com/crmco/crm/model
Created SRC_MAIN_JAVA/com/crmco/crm/model/Customer.java
Created SRC_MAIN_JAVA/com/crmco/crm/model/Customer_Roo_Configurable.aj
Created SRC_MAIN_JAVA/com/crmco/crm/model/Customer_Roo_Entity.aj

Getting Started | 11

Created SRC_MAIN_JAVA/com/crmco/crm/model/Customer_Roo_ToString.aj
~.model.Customer roo>

A couple of things are striking about this output.

First, the prompt has changed. It was “roo>,” and now it’s “~.model.Customer roo>.”
The prompt indicates the focus. The focus describes the subject of actions on the shell.
In this case, Roo has given the entity you’ve just created focus. It knows that, more
than likely, subsequent commands will attempt to modify this entity, and that it would
be inconvenient if you had to specify the entity each time.

Second, Roo gave you four files, not just a single one! The first file (SRC_MAIN_JAVA/com/
crmco/crm/model/Customer.java) you might correctly recognize as the Java class for
your Customer JPA entity. It looks like this:

package com.crmco.crm.model;
import org.springframework.roo.addon.entity.RooEntity;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;

@RooJavaBean
@RooToString
@RooEntity
public class Customer {
}

Kind of underwhelming, huh? Not a lot here. The only thing of interest here are the
annotations at the top. These annotations are compile-time retention only—they dis-
appear once the code’s compiled. They are used to signal to Roo that you want Roo to
manage boilerplate code for you while you are developing. This boilerplate code exists
in the other .aj files that were created.

You can click on the shell to open the other files, those ending in .aj. These files are
the AspectJ ITDs we mentioned earlier. You won’t be able to see them in the Eclipse
Package Explorer unless you disable a filter. To do so, click on the little down-arrow
on the Package Explorer, choose Filters, and then find the checkbox for “Hide gener
ated Spring Roo ITDs” (Figure 1-8). Uncheck it if it’s selected.

You are not supposed to modify these other files, they are there for Roo but lets see
whats in them. Open the SRC_MAIN_JAVA/com/crmco/crm/model/Cus
tomer_Roo_Entity.aj file. This file exists because Spring Roo placed a @RooEntity an-
notation on your class. If you examine the code, you’ll see that Spring Roo’s already
generated an ID for your Customer entity, it’s already generated a version column,
and it’s already generated simple, ActiveRecord-style CRUD methods to create, re-
move, update, and delete a Customer object using a JPA EntityManager. If you examine
the other file (Customer_Roo_ToSring.aj), you’ll see that Spring Roo knows about the
instance variables in the class—including the ID and the version column—and already
incorporates them into a useful toString() definition. The last file (Customer_Roo_Con
figurable.aj) simply adds the AspectJ @Configurable annotation to the entity so that
Spring can transparently inject the JPA EntityManager into the entity class. Spring has

12 | Chapter 1: Your First Intrepid Hops … err, Steps

no problems injecting collaborating beans into other Spring beans that it instantiates
in the application context. Because Spring doesn’t control the construction and lifecycle
of the JPA Customer entity—it needs to use AspectJ, which @Configurable specifically
supports.

A quick word about Roo’s (neighborly, but sometimes unsolicited) help:
it’s entirely optional. For example, if you feel like you have a lot to offer
in toString method implementations, and want to provide your own,
then you can do so. Add a toString method implementation in your
Customer.java class and the corresponding Customer_Roo_ToString.aj
file will disappear! Spring Roo will never presume to know more than
you. At the first sign that you want to drive, to exert control over the
code, Roo will get out of the way. If you simply don’t want Roo to even
bother, simply remove the annotation from the Customer.java file and
watch as Spring Roo removes the corresponding .aj file. If, later, you
decide you that you were a bit hasty in dismissing its help, simply replace
the annotation and Roo will obediently hop back into action again.

Figure 1-8. Disabling a filter

Getting Started | 13

Let’s get back to it. We’ll define the column for the first name and the last name. To
create the attribute, use the Roo field command, like this:

field string --fieldName lastName --notNull

Spring Roo will automatically add a field to the Customer.java class and it’ll generate
corresponding accessors and mutators in the Customer_Roo_Entity.aj file. It also up-
dates the Customer_Roo_ToString.aj to include the new field. Very smooth! You type a
field, and Roo contorts to welcome that new field into the code base, updating every-
thing as appropriate.

You could simply add the field to the entity class, if you’d like. In this case, it turns out
to be roughly the same amount of typing so it really is a matter of choice. The Roo shell
command has other options that you may not remember how to set up manually, which
makes the Spring Roo command more convenient. For the lastName field, simply add
it, manually:

@NotNull private String lastName;

Just as last time, Spring Roo hops into action, changing the other code as required to
welcome the new field. See? Roo’s flexible. It gets out of your way and helps whenever
it can.

So far, so good! Admittedly, this is a very simple entity so far. Let’s set up the CartOr
der entity, which has a one-to-many relationship with the Customer entity. First, create
the CartOrder entity, just as you did the Customer entity:

entity --class ~.model.CartOrder
field boolean --fieldName inCart
field date --fieldName dateOfOrder

To link the two, we need to use a special variant of the field command to establish the
one-to-many relationship from the Customer, to the CartOrders. Let’s go back to our
Customer entity and manipulate it.

Type:

focus --class ~.model.Customer

to change back to the Customer entity. Then, define the collection:

field set --fieldName orders --type ~.model.CartOrder --cardinality ONE_TO_MANY --
mappedBy customer

This is half of our relationship, but we have to define the reverse side of the relationship,
too. The “mappedBy” attribute tells Spring Roo that the field to use on the CartOrder
entity is the customer attribute, presumably of type Customer. This is how you map a
foreign key—the inverse side of this relationship—in JPA. Focus on the CartOrder,
again, and then add the reference to the owning side—a Customer entity:

focus --class ~.model.CartOrder
field reference --fieldName customer --type ~.model.Customer --cardinality MANY_TO_ONE

14 | Chapter 1: Your First Intrepid Hops … err, Steps

Database Reverse Engineering
It would be easy to continue in this way, fleshing out the balance of the model. Instead,
however, let’s look at Spring Roo’s database reverse engineering feature (DBRE) to
simply generate the model for us from an existing schema.

database reverse engineer --package ~.domain --schema PUBLIC

The command will fail because it can’t figure out which driver to use to connect to the
database from which the domain model should be generated, but Spring Roo knew this
might arise and has provided guidance. When you issue the command, it’ll respond
that you need to install a driver for the database, and then show results:

database reverse engineer --package ~.domain --schema PUBLIC

Located add-on that may offer this JDBC driver
1 found, sorted by rank; T = trusted developer; R = Roo 1.1 compatible
ID T R DESCRIPTION
--
01 Y Y 1.3.155.0020 H2 #jdbcdriver driverclass:org.h2.Driver. This bundle...
--
[HINT] use 'addon info id --searchResultId ..' to see details about a search result
[HINT] use 'addon install id --searchResultId ..' to install a specific search result,
or
[HINT] use 'addon install bundle --bundleSymbolicName TAB' to install a specific add-
on version
JDBC driver not available for 'org.h2.Driver'

You heard the man … err … shell! Get hopping! It’s practically rolled the red carpet:

addon install id --searchResultId 01

Spring Roo will try to connect to the H2 database instance and look for tables to gen-
erate the entities from. It won’t find any, of course. You need to install the tables, which
are available as part of this book’s source code download, as roo_crm.sql. In our local
installation, we’re running the H2 database as a server, not in-memory. You can see
what database properties Roo’s already using by using the database properties list
command (which simply dumps the values in src/main/resources/META-INF/spring/
database.properties).

Our local configuration looks like this:

database.password=
database.url=jdbc:h2:tcp://localhost/~/roo_crm
database.username=sa
database.driverClassName=org.h2.Driver

In this configuration, the H2 client will try to connect to an H2 database instance
running as a server, locally. You can download the H2 database from www.h2data-
base.com. Unzip it where you’d like and the run the h2.bat or h2.sh script inside the
bin folder.

Change the H2 database connection URL like this:

Getting Started | 15

http://www.h2database.com
http://www.h2database.com

database properties set --key database.url --value jdbc:h2:tcp://localhost/~/roo_crm

It’ll churn for a second, and then return you to the shell, at which point you can simply
re-issue the database reverse engineering command. Note that we’ve specified
~.domain, not ~.model, to avoid having the DBRE command overwrite, and conflict
with, the existing Customer class definition. You may simply delete the existing
~.model package.

“I Need To See Your ID” Be sure that your tables have a primary key.
Roo requires a primary key (and also really, really likes a version column
—some addons don’t work without it) to do its work, so make sure that
you’ve got one on all tables you import. Some recommended guidelines:
use a long or equivalent type for the ID, and at least an integer for the
version column. This will please Roo (and make your queries faster).

The entities that are brought in from the DBRE process are empty—all the fields that
were generated are in an ITD—of the form $ENTITY_Roo_DbManaged.aj.

If you’re confident in the reverse engineering, then open up the $ENTITY_Roo_DbMan
aged.aj file and move all the fields into the entity directly. This will cause the
$ENTITY_Roo_DbManaged.aj file to be deleted, and works more naturally when adding
finder methods, as we describe in the next section.

Riddle Me This
Thus far, we’ve simply built our entities and relied on the generated query methods
that are added to them by default. We can, for example, interact with our database
using the methods added to each of our entities by default:

// create a new Customer entity
Customer customer = new Customer() ;
customer.setFirstName("steve");
customer.setLastName("mayzak");
customer.persist();

// presumably we've gotten ahold of the ID
Customer steve = Customer.findCustomer(1L) ;
steve.setFirstName("Steve");
steve.setLastName("Mayzak");
steve.merge() ;

// count the records in the database
long customers = Customer.countCustomers();

This is a start, but often we need to retrieve data using more sophisticated queries. To
do this in Spring Roo, we need to create “finder” methods. This, as it turns out, is very
easy. Spring Roo has a whole arsenal of finders that it knows how to generate without
your help at all. First consult this list to see if any of the ones it can add are what you’re
looking for:

16 | Chapter 1: Your First Intrepid Hops … err, Steps

~.domain.Customer roo> focus --class ~.domain.Customer
~.domain.Customer roo> finder list
findCustomersByCartOrders(Set cartOrders)
findCustomersByCompanyId(Company companyId)
findCustomersByFirstNameEquals(String firstName)findCustomersByFirstNameIsNotNull()
findCustomersByFirstNameIsNull()
findCustomersByFirstNameLike(String firstName)
findCustomersByFirstNameNotEquals(String firstName)
findCustomersByLastNameEquals(String lastName)
findCustomersByLastNameIsNotNull()
findCustomersByLastNameIsNull()
findCustomersByLastNameLike(String lastName)
findCustomersByLastNameNotEquals(String lastName)
~.domain.Customer roo>

Use the finder add command, specifying the finder name as specified in the finder
list output:

~.domain.Customer roo> finder add --finderName findCustomersByFirstNameLike

Open up the newly created Customer_Roo_Finder.aj file to inspect the finder method
that was created for you.

If you don’t see a finder that you want already, you can of course simply add a finder
as you’d like in the entity’s Java class, in the same style as the finders generated by
Spring Roo.

On The (Active) Record
Spring Roo builds active record style entity objects. Active record objects—from Martin
Fowler’s active record pattern—are essentially entity objects whose interface includes
methods to store, retreive (through queries, or by ID), update, and delete the entity.
While the active record pattern is famously used quite succesfully in Ruby on Rails and
Grails, it’s little known in typical enterprise Java shops where the preferred approach
is to use services, or, as often, services and repositories. It is still easy to build a service
tier facade with Spring Roo, delegating to the active record-style entities to perform
basic repository object duties.

Persistence with Spring Data Graph
Has always featured great support for JPA, and—with a newly revised, more generic
meta-model available to addon developers, you can expect Spring Roo to support al-
ternative persistence models.

This is becoming valuable as companies are increasingly faced with more complex or
higher volume data challenges. There is a new breed of database—iconified by the name
“NOSQL” (Not-Only-SQL). NOSQL is all about pragmatism—use the best tool for
the job, and—to use a cliche—understanding that one size does not fit all. When we
talk about persistence challenges that use a hybrid architecture consisting of both the

Persistence with Spring Data Graph | 17

new generation of databases, and more traditional RDBMSes, we call it “polyglot per-
sistence.”

The Spring Data project embraces and simplifies NOSQL technologies and provides
idiomatic Spring support for the various technologies, including template implemen-
tations, exception translation, mapping and conversion support, and much more.

Spring Data is an umbrella project. There is distinct support for all manner of technol-
ogies, including key-value stores (e.g., Redis), document stores (e.g., MongoDB), and
graph stores (e.g., Neo4j), among others.

In this section, we’ll look at a Roo addon for Spring Data Graph—which brings the
power of Neo4j to your Spring applications. Neo4j is an open-source, Java graph da-
tabase that has been available since 2003, and is in use in production in companies
worldwide. The Spring Roo addon was developed by Neo4j, in cooperation with the
Spring Data and Spring Roo teams.

Graph Databases are the most flexible of the available NOSQL solutions. They store
your data as a graph of nodes and relationships both having properties. This maps
naturallly to what most people imagine when they build their entity domain models.
You can see that object networks map directly to a graph without having to deal with
object-relational management pains like impedance mismatch. Most graph databases
are schema free and embrace your data as it is, without bending it to fit their constraints.

In the end, everything is connected and the relationships between things are often more
important than the things themselves. It’s not hard to think of examples that are better
served by these kinds of topologies: social networks, computer networks, inventory
management or e-commerce solutions all spring to mind. Graph databases excel at
heavily interconnected data. They invite you to add more relationships and properties
to enrich your data model with all information available. This very rich data model
invites you to explore and traverse the graph to find answers to your questions. Perhaps
even to questions you didn’t know you had.

Graph traversals are local operations which are independent of data set size and ex-
tremely fast. Even on commodity hardware, Neo4j can traverse millions of nodes in
mere milliseconds regardless of dataset size.

Spring Data Graph comes with an object graph mapping technology that uses conven-
tions and some annotations (much like JPA) and leverages AspectJ under the hood to
provide a transparent mapping between your POJOs and the graph database. Entities
are mapped to nodes in the graph, references to other entities are mapped to relation-
ships. You even have the ability to map relationships to real entities (Relationship En-
tity) that provides a much richer way of working with them. All fields of an entity or
relationship are mapped to properties of the graph elements. Spring Data Graph also
stores type information inside the graph which allows you to retrieve any node and
automatically get it back as instance of the correct type. But as the graph is schema-less
you can also project nodes to other, unrelated types that share properties with the initial

18 | Chapter 1: Your First Intrepid Hops … err, Steps

one. AspectJ is also used to add some Active Record like operations to each entity—
just as we saw earlier, in the JPA examples.

Spring Data Graph is also able to integrate with a JPA application—this is called cross-
store persistence or polyglot persistence. This support lets you have the best of both
worlds: store your line of business data in a traditional RDBMS, but store the data about
the relationships in Neo4j.

Let’s dive directly into action and see how the plugin is installed and used. Spring Roo
addons make it even easier to set up your NOSQL project. To install the Neo4j addon,
you need to use the Roo Bot the plugin management solution for Spring Roo. Let’s go
to the Roo shell and search for the add-on and install it. You probably have to trust my
pgp key first, like this:

roo> pgp trust --keyId 0x29C2D8FD

Added trust for key:

>>>> KEY ID: 0x29C2D8FD <<<<
 More Info: http://keyserver.ubuntu.com/pks/lookup?
fingerprint=on&op=index&search=0x29C2D8FD
 Created: 2011-Jan-06 10:48:11 +0000
 Fingerprint: 558eb0489fe5500c68fa8a306107f33d29c2d8fd
 Algorithm: RSA_GENERAL
 User ID: Michael Hunger <Michael.Hunger@jexp.de>
 Signed By: Key 0x29C2D8FD (Michael Hunger <Michael.Hunger@jexp.de>)
 Subkey ID: 0xDEFB5FB1 [RSA_GENERAL]

roo> addon search graph
roo> addon install id --searchResultId 01

And with that, you’re ready to go. Most of the commands available to the Neo4j add-
on are similar to the ones you’ve already seen with JPA. Let’s set up your new project
and the graph database:

roo> project --topLevelPackage com.crmco.crm
roo> graph setup --provider NEO4J --databaseLocation crmdata.db

Spring Roo will update the Maven dependencies to use the current Spring Data Graph
and Neo4j version, as well as add an applicationContext-graph.xml configuration file
which contains a single line of namespace-based configuration, shown below:

<datagraph:config storeDirectory="${neo4j.location}"/>

Now we can start to model our domain. Unsurprisingly, the syntax resembles the de-
fault Roo syntax for creating entities and adding fields:

roo> graph entity --class ~.model.Customer
roo> field string lastName
roo> field string firstName

These commands created the Customer entity class. But instead of having the @RooEn
tity annotation on top of the class (which would mark it as a JPA Entity), you can see

Persistence with Spring Data Graph | 19

that the addon added @NodeEntity which causes the AspectJ handling for the object
graph mapping of Spring Data Graph to kick in:

roo> graph entity --class ~.model.Company
roo> field string company

roo> graph entity --class ~.model.CartOrder
roo> field date --fieldName dateOfOrder --type java.util.Date

roo> graph entity --class ~.model.LineItem
roo> field number --fieldName quantity --type int

roo> graph entity --class ~.model.Product
roo> field string name
roo> field string description
roo> field number --fieldName price --type double

Creating relationships is similar to adding references in a JPA-based domain model.
Lets start with a simple relationship:

roo> graph relationship --from ~.model.LineItem --to ~.model.Product --fieldName
product

This adds a field to LineItem pointing to Product which is annotated with the direction
of the relationship. Whenever this variable is read, Spring Data Graph looks for an
outgoing “product” relationship of the LineItem node in the graph and returns the end
node (i.e., a product). If you set the variable, a relationship is created. It is as simple as
that:

@RelatedTo(direction = Direction.OUTGOING)
private Product product;

Creating a many-to-one relationship between CartOrder and Customer is simple:

roo> graph relationship --from ~.model.CartOrder --to ~.model.Customer --fieldName
customer --type ORDERED --cardinality MANY_TO_ONE

Adding the inverse relationship results in having a single customer field in the order
with the type we provided at the command:

@RelatedTo(type = "ORDERED", direction = Direction.OUTGOING)
private Customer customer;

A bit more demanding is the relationship between Customer and CartOrder:

roo> graph relationship --from ~.model.Customer --to ~.model.CartOrder --fieldName
orders --type ORDERED --cardinality ONE_TO_MANY --direction INCOMING

Roo springs into action, adding a Set<CartOrder> orders field with the appropriate
annotation to the Customer entity. Please note that this Set is auto managed, you never
have to create it yourself and it will always reflect the relationships that exist in the
graph. Any modification of the set will result in the appropriate modification of the
graph relationships as well:

@RelatedTo(type = "ORDERED", direction = Direction.INCOMING)
private Set<CartOrder> orders;

20 | Chapter 1: Your First Intrepid Hops … err, Steps

Graph relationships are directed, but can always be traversed in the opposite direction.
So if your domain model doesn’t call for explicit relationships in either direction to
model a domain concept, you should just use one relationship and specify the opposite
direction at the other end.

Let’s repeat that, with a twist.

This was the non-graphy way of modelling this domain. What if your line items are not
much more than a relationship between orders and products? If there is no order, there
is no line item. If there is no product, there is no line item for that too.

So instead of creating the line item as graph entity, we do the following:

roo> graph relationship --from ~.model.CartOrder --to ~.model.Product --via
~.model.LineItem --fieldName items --cardinality ONE_TO_MANY

The result of this operation unsurprisingly added a relationship field to CartOrder:

@RelatedToVia(direction = Direction.OUTGOING)
private Iterable<LineItem> items;

This time with a different annotation which annotates fields that don’t return the target
Node-Entity but rather the relationship entities in between. The iterator is read-only
and can also handle millions of relationships between two nodes because of the lazy
evaluation:

@RelationshipEntity
class LineItem {
 @StartNode CartOrder cartOrder;
 @EndNode Product product;
}

It also created a new class called LineItem but this time with a @RelationshipEntity
annotation and two fields. One for CartOrder annotated with @StartNode and the other
one for Product annotated with @EndNode. As of now, relationship entities cannot be
created directly but rather via calling entity.relateTo(targetEntity) (e.g., cartOr
der.relatedTo(product)).

Relationship entities can have fields too:

roo> field number --fieldName quantity --type int

After setting up the domain model, you’re ready to go! Not bad for a few incantations,
eh?

Persistence with Spring Data Graph | 21

CHAPTER 2

Spring Roo on the Web

If you model your business data in the forest and nobody accesses it, did you really
model it? In the last chapter, we looked at Spring Roo’s sophisticated support for easy
data modeling, but this is not an end in of itself. To be useful, you need to connect your
applications to your users, and the most obvious way to do this today is to build a web
application that they can interface with. Spring Roo provides excellent support here,
as well. Spring Roo supports many web technologies, including Spring MVC, Spring
Webflow, Flex, GWT, Vaadin, and Flex.

We’ll review some of these technologies in this chapter.

Spring MVC
Spring MVC is a model-view-controller framework, which, as its name implies, has
three essential parts. MVC is a well-known pattern in web frameworks. Its most re-
deeming quality is that it encourages clean, well-layered, decoupled applications that
promote application growth to support new requirements. The “front controller” in
the diagram is the Spring MVC DispatcherServlet, which needs to be registered in
web.xml. It routes all requests coming into the web application to registered Spring
MVC Controllers. Controllers are just POJO Spring beans that have annotations that
describe the mapping between a URL (and the HTTP method—GET, PUT, POST,
DELETE, etc.—used to access that URL) and the methods in a controller.

Controller methods are expected to process the request—perhaps access a backend
service, invoke business logic, etc.—and then set up model (your JPA entities) data
that’s used to driven the generation of a view. The view—often—is a JSP page or some
other sort of template, or it’s a representation of some sort of data. This representation
of data can be in XML, or JSON, or any other encoding you desire.

As Spring MVC uses Spring, it is completely configurable. Every aspect of it—from the
view resolution mechanism, the views, the controllers, and the request dispatcher itself
—can be configured. While Spring MVC is extremely flexible, it can be overwhelming
for the uninitiated. By default, Spring MVC ships with common-sense defaults enabled,

23

but building a typical application using Spring MVC can still be tedious because of all
the technologies you’re likely to want to integrate with it in order to build the best web
application possible: JSPX for clean, XML-centric view templates, JavaScript to add
dynanicism and interactivity to the client, HTML (which of course is used to describe
the structure of the pages rendered in the browser), JSR 303-based bean validation to
handle validation on your entities, REST (to expose clean, easily reused services in terms
of the common idioms of the web), CSS to support declarative styling, Apache Tiles to
support templating and page fragment reuse, internationalization, and much more.
Spring Roo can be of great help here because it relegates all of these concerns to hushed
whispers while you orchestrate your symphony.

Getting started with Spring MVC is a snap with Spring Roo. Let’s take our first step
and create a Controller to manipulate our Customer JPA entity:

controller scaffold --entity ~.domain.Customer --class ~.web.CustomerController

This command will take an unusual amount of time. The first time Spring Roo generates
a web artifact for you, it automatically upgrades your Roo project to be a web project.
Up until this point, Spring Roo was only building a .jar archive, not a .war. A .war
archive requires a different directory structure, and configuration.

Sit back, and watch the fireworks. Spring Roo will set up a default web project that will
install the correct configuration and numerous files that we’ll reuse in the rest of the
project, such as images, JavaScript assets, styles, and JSP tag libraries. It’ll correctly
update the Maven build to have all the dependencies that are required. We won’t in-
clude the output here because there’s simply too much. Try it out for yourself, and
you’ll agree: this is all code that you don’t want to write yourself.

And, of course, Roo has generated a controller. Open up the Controller class,
com.crmco.crm.web.CustomerController. Just as with the entities before, this class is
spartan. Most of the magic is in the adjacent ITD files. You’ll see two ITDs, one for the
pureplay controller duties, and—surprise!—another controller to expose the data from
the finder method we generated earlier.

Figure 2-1. The interaction between the model, the view, and the controller

24 | Chapter 2: Spring Roo on the Web

Taking Our Application for a Spin
We’ll dissect all of the newly generated code in a minute, but if you’re anything like
me, you’re itching to see something working. Let’s use the soothing, anti-itch salve of
instant gratification and have a look at our application. If you’ve been following along
in SpringSource Tool Suite, then this next bit’s drag ’n drool simple: drag the project
root in the Package Explorer on to the web server in the Servers tab on the bottom left.

The server is called “VMware vFabric tc Server Developer Edition v2.5,”
which is quite a mouthful. We’ll just call it tcServer Developer Edition,
going forward. TcServer describes SpringSource’s hardened, produc-
tion and operations-friendly version of the leading Apache Tomcat 7
web server. TcServer Developer Edition, which comes bundled and pre-
configured with SpringSource Tool Suite, is a free-for-development ver-
sion of that product that comes bundled with all sorts of niceties, in-
cluding sophisticated monitoring to help you profile and optimize your
application during development. Naturally, you could use any other of
the bundled WTP servers, including Tomcat, if you’d like, but I think
you’ll find tcServer Developer Edition a nice fit.

Once you’ve dragged the application onto the tcServer Developer Edition instance, start
it by clicking on the green button with a white, right-facing arrow in the middle of it.
It’ll launch, and ask you if you’d like to enable Spring Insight to gather metrics, as
shown in Figure 2-2:

Figure 2-2. Spring insight dialog

Choose “Yes.” The application should start up and be available at http://localhost:8080/
crm/customers. Figure 2-3 shows what this will look like.

Taking Our Application for a Spin | 25

http://localhost:8080/crm/customers
http://localhost:8080/crm/customers

Figure 2-3. Roo-generated web app

Pretty hot, right? What? Not a fan of the green? The look and feel is entirely custom-
izable, and we’ll address that shortly. But first, take a look around—click on some of
the links. You can see that Roo’s already generated forms so that you can search for
customers, create them, update them, and list them. On the bottom of the page, you
will see a few links where you can change the language displayed as well as the theme
used. If you don’t need these options, then they’re easily removed, but it’s nice to know
they’re already configured for you.

“You Win … a Braaand Neeew Web Application!”
Not really. Quite the opposite, actually. If you’ve been using Spring in web development
before, then this application’s going to be very familiar. In fact, if you’ve ever written
an application that’s as sophisticated and as large as the application that’s just been
created for you, then you’re very familiar with these technologies, because you’ve no
doubt spent a lot of time in front of them. So, nothing new about it. Just the familiar
technologies you already know.

For those of you who haven’t seen an application that tackles as much as this one does,
we’ll review some of the highlights.

Let’s look at what’s been configured in the web.xml. Roo has registered a listener—
ContextLoaderListener—that is used to hoist Spring application contexts into exis-
tence. This is typically done to hoist into existence application contexts whose beans
are visible to all other contexts. You might, for example, use this to start up the appli-
cation context that contains your services, data sources, and other beans that might
need to be shared across multiple other contexts.

Roo has registered the DispatcherServlet, which is of course the central class not only
in Spring MVC, but Spring’s entire web stack. The DispatcherServlet can also hoist
Spring application contexts into existence. You might register several DispatcherServ
lets in a single application—one for Spring MVC, one for Spring Web Services, etc.,

26 | Chapter 2: Spring Roo on the Web

as your needs demand, so beans registered in an application context by a Dispatcher
Servlet are often web-tier and DispatcherServlet-specific in nature, and are often in
service to that particular DispatcherServlet. It also knows how to enlist beans of certain
types defined in the application context in specific types of service. For example, a
HttpRequestHandler is a very low-level type of Spring bean that can be used in respond-
ing to HTTP requests.

Roo’s also registered a few error-page elements to map an Exception and a 404 to the
appropriate (preconfigured) Spring MVC resources.

Roo has registered several filters for us, to handle many different issues:

HttpMethodFilter
Of the HTTP verbs—PUT, GET, DELETE, POST, etc.—your average browser only
knows two of them, GET and POST. This filter is a proxy that adapts requests coming
from a form in a browser using known conventions into the appropriate invocation
on the server side.

OpenEntityManagerInViewFilter
This filter keeps a JPA EntityManager open while requests are being served by Spring
MVC. This lets you navigate the relationships on your JPA entities in the view tier,
eschewing the dreaded LazyInitailizationException that you’d normally get if you
didn’t have an active session open.

CharacterEncodingFilter
Allows one to specify a character encoding for requests. Current browsers typically
do not set a character encoding, even if specified in the HTML page or form, so
this is a convenient way to sanitize requests.

Figure 2-4. Web directory structure

“You Win … a Braaand Neeew Web Application!” | 27

Spring Roo has also generated a slew of layout code. The layout code’s neatly organized
in several directories, the kind of meticulous neatness you’d expect from a team leader
with years of experience in scalable application development practices. Let’s look at
some of these directories in depth, particularly those under src/main/webapp/WEB-INF/:

Directory Description

WEB-INF/i18n This file contains the internationalized messages for your application. Spring makes it very easy to access
internationalized messages anywhere.

WEB-INF/layouts Where you should keep your Apache Tiles layout definitions (not the individual fragments that are
arranged into layouts)

WEB-INF/spring Suggested (though not required) folder for your Spring configuration files.

WEB-INF/tags/forms Self-contained directory for tags that can be used to bind backing model objects to form fields. You can
modify these fields (with some very small provisos) and Spring Roo will tolerate them. These tags also
embed Dojo JavaScript where appropriate to provide client-side interactivity.

WEB-INF/tags/menu Self-contained directory for tags to display the menu and navigation for your application.

WEB-INF/tags/util Self-contained directory for tags to handle common scenarios like loading JavaScript, theming, and
wrapping blocks in panels.

WEB-INF/views Directory where common fragments used across all your pages—like footers and sidebars and so on
—are stored, as well as fragments for individual pages, in nested folders.

Not too shabby! There’s a lot here, and—as we’ll see—it can all be tailored to spec,
and in keeping with best practices typical of enterprise Java application development.
All of this was generated (this one time) just to support the controller that we asked
Roo to generate for us. Which brings us back around to the rabbit that got us down
this particular hole in the first place, our CustomerController, and the scaffolding it
generated…

Scaffolding
One of the best parts about Spring Roo—a framework that knows so very much about
your domain model—is that it can use that knowledge to inform how it creates the web
tier. The most natural extension of this idea is of scaffolding. Scaffolding, as it’s famously
called in Ruby on Rails and Groovy and Grails, describes the generation of views de-
signed to manipulate the entities created.

Scaffolding is useful for a number of reasons. First, scaffolding views cuts the develop-
ment time in half, getting you to a point where you can start prototyping a system and
entering data. Sure, no automated tool’s going to generate the perfect web application
for you, but nobody said it would. Instead, it’ll generate a web application, built to the
highest standards in Spring web development, that you can then iteratively push to the
finish line, changing the code as you go.

28 | Chapter 2: Spring Roo on the Web

In running the controller scaffold command, we told Spring Roo to generate code to
support the creation, update, and deletion of the Customer entity that we generated. It
happily obliged, filling in all the gaps required to get our plain old Java project converted
into a web application, and generating the required Spring MVC controller and sup-
porting web views. The controller is presented below in its entirety:

package com.crmco.crm.web;

import com.crmco.crm.domain.Customer;
import org.springframework.roo.addon.web.mvc.controller.RooWebScaffold;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;

@RooWebScaffold(path = "customers", formBackingObject =
Customer.class)@RequestMapping("/customers")
@Controller
public class CustomerController {
}

Just as with the entities before this, the controller that Spring Roo’s generated for us is
remarkably underwhelming. We can see a few telltale annotations of the same sort as
were on the entities, specifically the @RooWebScaffold annotation, which is another
marker annotation that signals to Roo that you want to “opt-in” to the services that
Roo can provide. Specifically, the scaffolding provided by Spring Roo lives in an adja-
cent ITD, called CustomerController_Roo_Controller. Open that up and you can see
that Roo’s generated all sorts of controller methods. These controllers methods are
used in conjunction with the JSP pages that Spring Roo’s generated.

The scaffolding isn’t a one-way trip. You can, for example, change the path attribute
in the RooWebScaffold annotation, and the path referenced in the scaffolding ITD will
update accordingly in all of the places it’s referenced. You might, for example, change
the path to say “clients,” instead, and your entire web application—including the web
tier artifacts—will update appropriately. Note, however, that it’s left the old directory,
views/customers/ in place for the web tier artifacts, and simply added a new directory
in the same folder called views/clients.

As we’ve seen before, Spring Roo is very intelligent about how it balances its mandate
to automate as much of the required code as possible with your (natural) wish to exert
control on certain aspects of the application. When building the domain model, Spring
Roo uses the clean separation of concerns enforced by the ITDs and the Java classes to
ensure that it never steps on your toes. The rules are simple, you can use the command
line to generate Java, XML, or other artifacts that you’re then expected to maintain. As
you edit the Java artifacts, Roo manages the required boilerplate in an ITD file—usually
adjacent to the artifact—which you are not expected to modify, or even consciously be
aware of. The only time thereafter that Spring Roo will modify your Java code directly,
for example, is when you explicitly ask it to, from the shell.

This separation is less clear on the web tier. In this case, Roo has generated user editable
artifacts—the .JSPX files—that it will also need to maintain. In particular, when you

Scaffolding | 29

update an entity, it will try to update the corresponding JSPX pages and controllers
appropriately.

The first thing to note is the file extension—JSPX—which might be new to some of
you. Roo generates XML centric JSP files, not the standard JSP files that are still so
common, unfortunately. JSPX files are easier to restructure because they’re valid XML,
and they also comport enough information in their structure that Roo can do smart
things about refactoring them, even if you’ve updated the view since it was first gen-
erated.

The second thing that strikes us is the sheer number of files. The page that contains the
form to create clients lives in src/main/webapps/WEB-INF/views/clients/create.jspx.
Open the create.jspx and—above all—don’t panic. The few stanzas you see before
you really are all the code required to display the page you saw in your browser. You’re
standing on the shoulders of giants here, and that should be comforting, but I suspect
you want to know why this works, not just that it works.

When Roo created our application it created a file called src/main/webapp/WEB-INF/
spring/webmvc-config.xml, which in turn configures the Spring MVC framework. Roo’s
taking advantage of that aforementioned flexibility and has configured how Spring
MVC resolves views. If you recall those scaffolding methods in the CustomerControl
ler_Roo_Scaffold.aj, they all had return statements with strings, like this:

 @RequestMapping(method = RequestMethod.GET)
 public String CustomerController.list(
 @RequestParam(value = "page", required = false)
 Integer page,
 @RequestParam(value = "size", required = false) Integer size,
 Model uiModel) {
 ...
 return "clients/list";
 }

This string—“clients/list”—is a bit of indirection. It’s used by Spring MVC to resolve
the view, but it doesn’t specify a specific asset. Instead, it specifies a logical view name,
which the configured view resolves can resolve accordingly. In this case, Roo’s config-
ured a TilesView on a URL view resolver, and configured a few Apache Tiles template
definition files. These templates define the “shell” of the page—the navigation, header,
footer, etc. The only thing that changes on all requests is the bit in the middle—the
content unique to each URL. When Tiles looks at these indirect, logical view names,
it resolves them to views that can be used to flesh out the missing part of the template.
In the case of the “create” page, it loads “clients/create.jspx.” So that’s why the form’s
missing any evidence of any of the other stuff on the page.

Even so, the page has very few lines to support what looks like a complex form. But
these tags may be novel to you. They are part of the assortment of tags that came with
the code-generated Spring Roo application. If you’d like to exert control over how forms
look in Spring Roo, then you can simply modify these tag files and you can exert control

30 | Chapter 2: Spring Roo on the Web

through the entire application. In essence, Roo’s made it easy for you to build a very
modular view, quickly.

How Spring Roo Builds the Scaffolding
Spring Roo builds these forms based on the relationships that it can infer from the JPA
mappings. Note that Spring Roo doesn’t strictly rely on the JPA associations, instead
it relies on a generic model of the relationships that Roo maintains. This generic model
could conceivably be used by other addons to plug in other types of models besides JPA.

There are tags for all the common types of data types. Roo does a great job mapping
data types to the appropriate tags for forms or for display: booleans get checkboxes,
small strings get an input field, large strings get text areas, and dates are rendered using
a Dojo-based JavaScript date-picker. Roo employs its knowledge about your domain
model’s relationships to correctly display a select form element for them (e.g., sets, and
enums).

There is an empty label in the customer scaffolding form indicating that there’s no
company specified (Figure 2-5). It’ll give you an icon that you can click, but this will
fail, since there’s no scaffolding to support creating company entities. Since Roo hasn’t
generated any scaffolding for our other entities, it can’t do much to ensure that the
customer has a company, which is a required entity. This is also evident when you
create a new customer—the application blows chunks because the foreign key for the
company is null. We can create some scaffolding for all the entities in one go with the
following command:

controller all --package ~.web

Figure 2-5. Crm crud forms

Scaffolding | 31

Once that’s done, redeploy and try the application again.

Figure 2-6. Create form with a relationship specified

Now, you’ll see that the blue icon takes you to a resource where you can create a new
company. Create one (say, “VMware,” or “O’Reilly”), save it, and then return to the
customers view. You’ll see that the empty label’s been replaced with a drop-down from
which you can choose an entity.

A note about redeployments. The tcServer Developer Edition WTP
server instance will republish a deployed application anytime you
change any of the resources or files. Any change will set this off, as long
as you save the file you’ve modified. This behavior’s unhelpful, most of
the time. Double click on the WTP and make sure you’ve got the Over-
view tab selected. Expand the Publishing tab and choose “Never Publish
Automatically.” In this configuration, you’ll have to manually restart
the WTP instance whenever you’d like to see updates.

Usually, these redeployment cycles are trivial—Tomcat (and tcServer,
which is based on it) enjoy the fastest deployment times of any enterprise
Java servers. However, things could always be better, and SpringSource
Tool Suite can help out here, too. Enable the “Application Reload Be-
havior” found in the same dialog box. This functionality gives you near
instantaneous redeployment without ever restarting the server. This is
a lot of power for one little checkbox!

32 | Chapter 2: Spring Roo on the Web

Figure 2-7. STS agent reloading and publishing

Now you’ve got a fully working system to create and manage your entities. Each entity
has a page (“/list”) that displays a grid of the available entities, and there are forms to
view individual entities, create new ones and update or delete existing ones. Spring
Roo’s resilient to changes, too. Open up the Customer entity and add a new Date field.
You can use the command line, as before, or simply type in the following:

 @NotNull @DateTimeFormat(style = "S-") private Date birthday;

Save the entity and then watch the console; Spring Roo will update all of the existing
scaffolding code. You’ll need to also update the database table with the new column.
Issue this SQL on the console.

alter table customer
 add column birthday date not null;

Redeploy. A new date picker widget will be visible on the form. You can reorder the
fields of the form in src/main/webapp/WEB-INF/views/customers/create.jspx.

Spring Roo will not override your changes, but it will still correctly add new ones when
you change the entities. The secret Roo’s flexibility is the z attribute on the form field
elements.

<field:datetime
 dateTimePattern="${customer_birthday_date_format}"

Scaffolding | 33

 field="birthday"
 id="c_com_crmco_crm_domain_Customer_birthday"
 required="true"
 z="3+6qO83ESYHcRPLijiOzV7iRvjU="
/>

It’s a hash that Roo calculates, based on the element name (name only, not namespace),
attribute names present in element, attribute values present in the element. As long as
this hash doesn’t change (which is true as long as you don’t do anything to change the
identify, as described by this hash, of the element), then Roo can safely make changes
to the element while you change everything see about the form, including position in
the form and the surrounding HTML. If you make a change to the element manually,
Spring Roo will notice this and update the “z” attribute to the value “user-managed.”
Roo doesn’t manage all views in a project; typically it just manages the artifacts under
the src/main/webapps/WEB-INF/views folder, and the menu.jspx file.

We’re a fair bit into this little book of ours, and we’ve learned a lot, but it’s worth noting
just how much effort it would take to rebuild this entire application, soup to nuts:

persistence setup --database H2_IN_MEMORY --provider HIBERNATE
database reverse engineer --package ~.domain --schema PUBLIC
controller all --package ~.web

In addition to the above command line invocations, we also modified the Customer
entity’s Java class directly, but you could just as easily have used the Roo command
line to add those fields. All in all, we’ve achieved a lot for so very little.

Spring MVC’s got a lot of redeeming features that make it the most powerful web
framework available to the Java developer today. Its annotation-driven programming
model, the out-of-the-box abstractions to handle every manner of view (Tiles, PDFs,
CSV and Excel spreadsheets, images, RESTful payloads like JSON and XML, etc.), its
robust support for requirements typical of any serious Java application, all contribute
to Spring MVC’s appeal.

Spring WebFlow
Spring MVC applications, by default, don’t require an HTTP session. For many appli-
cations, an HTTP session is an extra weight that adds no value. The one place where
HTTP sessions are valuable is in dealing with transient, client-specific state that has to
be propagated across multiple requests. You might, for example, use an HTTP session
to store the state associated with a shopping cart and checkout process. Typically such
processes require the skilled management of object state over a series of several pages;
they require foundational support for navigating backwards and forwards, much like
a state machine. This sort of state is difficult to manage, however. There can only be
one HTTP session associated with a client, no matter how many requests are made,
which of course has the makings of a classic concurrency problem. Sessions are a shared
resource. Spring WebFlow provides a framework specifically for managing problems
like this.

34 | Chapter 2: Spring Roo on the Web

You can install Spring WebFlow quickly by issuing the following command:

web flow

Spring WebFlow builds on top of Spring MVC, and shares common configuration and
dependencies. Spring MVC and Spring Web Flow work well together, providing a
powerful combo-punch for all the challenges you might face. The majority of your
application will typically be developed in Spring MVC, with Spring WebFlow filling in
the gaps where you need stateful, “conversational” interaction. Spring WebFlow, once
configured, works by reading in descriptions of “flows,” described using Spring name-
spaces. These flows describe how pages in should be strung together in sequences.

Let’s look at the sample flow and folder that’s created when you install Spring Web
Flow.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="http://www.springframework.org/schema/webflow" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://
www.springframework.org/schema/webflow http://www.springframework.org/schema/webflow/
spring-webflow-2.0.xsd">
 <view-state id="view-state-1" view="sampleflow/view-state-1">
 <transition on="success" to="view-state-2"/>
 <transition on="cancel" to="end-state"/>
 </view-state>
 <view-state id="view-state-2" view="sampleflow/view-state-2"> <transition
on="cancel" to="end-state"/>
 </view-state>

 <end-state id="end-state" view="sampleflow/end-state"/>
</flow>

The flow contains three meaningful stanzas: two view-states, and one end-state. These
are only two of the many types of states that Spring WebFlow provides. Each state
describes itself—in this case a view-state describes a view to dispatch to—as well as
the transitions it might take. Spring WebFlow resolves views in the same way as Spring
MVC, and here the values for view—sampleflow/view-state-2., and sampleflow/view-
state-1 -map to Apache Tiles definitions, which in turn map to the JSPX files, just like
the strings returned from controller methods in Spring MVC. SpringSource Tool Suite
provides fantastic support for visualizing Spring Web Flows, just click on the “flow-
graph” tab at the bottom of the editor panel when this flow is open. It produces a
visualization of the graph. This visual view of the graph is editable; you can add new
nodes to the graph by dragging elements from the pallette on the left onto the graph or
alter the graph nodes by double clicking on the them and modifying their properties.

Scaffolding | 35

Figure 2-8. Webflow visualization

The specifics of Spring WebFlow are beyond the scope of this book, but getting started
is easy—simply install the configuration from here, and then consult the comprehen-
sive documentation at http://www.springsource.org/go-webflow2.

Integrating Roo with other Web Frameworks
Spring Roo is an enabler—a gateway drug. It simplifies to the point of triviality the
configuration and installation of technologies in service of your application. As pow-
erful as Spring Roo is, it does not do its work alone. It relies on the Spring framework
and other, sister frameworks to provide the runtime functionality—to actually make
these integrations work, to make them meaningful. As we move through the next sec-
tion, remember that Spring itself has integrations with more technologies than any
other technology and that half of the work of surfacing these technologies in Spring
Roo is often just having a way to enable the integration in a Roo project. The best
integrations, however, offer ways to improve development-time productivity with these
technologies. In this section, we’ll take a look at a few web frameworks that provide
compelling integrations for Roo users.

Some of the most exciting integrations today are in the web framework space. People
are building dynamic, highly interactive applications today that are a rich mix of client

36 | Chapter 2: Spring Roo on the Web

http://www.springsource.org/go-webflow2

side technologies like JavaScript, CSS, HTML, or Flex, and server side technologies like
Spring MVC.

For the integrations in the rest of this chapter, let’s assume a known starting point.
Delete your project, and create a new one using the New Roo project dialog in Spring-
Source Tool Suite (File > New > Spring Roo Project) and reset the entities with the
following Roo shell commands before trying out the technology specific commands:

persistence setup --database H2_IN_MEMORY --provider HIBERNATE
database properties set --key database.url --value jdbc:h2:tcp://localhost/~/roo_crm
database reverse engineer --package ~.domain --schema PUBLIC

GWT
The first technology on our rich-client roundup is the Google Web Toolkit, or GWT.
GWT is a cross compiler—it takes Java syntax code and compiles it into JavaScript.
The libraries available to the developer using this cross compiler resemble a subset of
the Java standard libraries, as well as several Java abstractions that are essentially mir-
rors of the common APIs that you would access running JavaScript in a browser, like
the DOM.

To add new functionality to a GWT application, you can build complex abstractions
using Java, or you can write JSNI—JavaScript Native Interface—adapter code and
provide a Java binding for it. This has been used by many to, for example, expose the
ExtJS JavaScript library as a Java API which can then be used in GWT code.

The GWT provides a convenient way for Java developers to build highly interactive,
dynamic JavaScript applications with rich, client-side state. GWT applications may
communicate with the server using a type of serialization that GWT recognizes.

Writing large, rich, cross-browser applications is easy with GWT. Java’s built in sup-
port for encapsulation and reuse lends itself to larger codebases. The JavaScript that
GWT produces is very optimized—it’s as if you had the most intelligent JavaScript
coder writing your code for you. The Java-to-JavaScript compiler can do things that
you’d never do if you were writing JavaScript directly, including function inlining and
obfuscation. The result is JavaScript code that’s blazing fast, if a bit ugly to look at.

To use GWT successfully, you need to set up the appropriate Eclipse plugins, configure
GWT itself, and then connect your server side services to the client-side code.

To get started, simply run the following command:

web gwt setup

This single command takes care of everything and leaves you with a working GWT-
based UI for your entities, in much the same fashion as the original Spring MVC ap-
plication. Below is a screenshot. You can restart the Spring application inside of
tcServer, and then start the GWT client side code itself. SpringSource Tool Suite already
has all the Google plugins pre-configured to support development with GWT. Your

Integrating Roo with other Web Frameworks | 37

Maven builds already been configured to correctly compile the GWT application code
as well. To test your GWT code, open up the GWT entry point—an XML file at the
root of your Roo base package (com.crmco.crm.ApplicationScaffold.gwt.xml—and
right click on it in the Source code editor window. Choose Run As > Web Application.
This will launch a browser with your code. During development, GWT runs in “hosted
mode.” Hosted mode is an environment that lets GWT connect your code to the IDE
(and the debugger). To support Hosted Mode, you need a plugin in your browser that
can communicate back to your IDE. You will be prompted to install this plugin if you
don’t already have it when you first run this application.

The application should look something like this:

Figure 2-9. CRM-GWT editing

38 | Chapter 2: Spring Roo on the Web

SpringSource Tool Suite includes all the sophisticated tooling to support development
with GWT. Indeed, the Google plugin that comes prebundled with SpringSource Tool
Suite also supports other Google technologies, like Google App Engine. Incidentally,
Spring has the distinct position of being the only enterprise Java framework that works
portably on all the major cloud environments, including Google App Engine, Amazon
Elastic Beanstalk, and of course, CloudFoundry. The Google plugin includes a visual
designer for GWT, which you can use by clicking on a GWT XML artifact and then
clicking on the “Design” tab at the bottom.

Figure 2-10. GWT visual designer

GWT is an example of SOFEA -- service oriented front end applications. In an SOFEA
application, clients make requests against server side resources to activate business logic
and marshal server side state back and forth using dumb objects (which smells suspi-
ciously like a DTO). This has the benefit that server side state is kept to minimum,
assuming of course that the services invoked are stateless as well. However, the resulting
code is filled with much more boilerplate code and more prone to security concerns.

Integrating Roo with other Web Frameworks | 39

Vaadin
Vaadin is different. Vaadin is built on top of GWT, and comes with a large array of
components, but these components are different than typical GWT widgets. Vaadin
widgets, as run on the client side, are simply stateless “proxy” widgets that delegate all
their business logic (and state management) to a server side peer. Thus, Vaadin appli-
cations make a lot more calls to the server, and the server keeps all the UI state, not the
client as with GWT. Because all the business logic runs on the server side, and because
all the UI state exists on the server side, the client needs only to be responsive and to
convey state changes to the server. Keeping the important business logic on the server
simplifies things a lot—it means you can avoid tedious code to serialize Java objects
back and forth as JavaScript objects, and any concerns about security are minimized
because all the business logic runs on the server side, away from prying eyes.

A cursory examination of the code in our previous GWT example will reveal a lot of
boilerplate code. Roo certainly got the ball rolling for us, but if the code it generated is
any indication, then there’s a lot of code to be written for a typical GWT application.
Vaadin solves this problem by providing a rich set of components and framework code
that greatly reduces the developer footprint.

To use Vaadin with Spring Roo, you first have to install it. It is not shipped out of the
box with Spring Roo, but instead is part of the huge, ever expanding ecology of Spring
Roo addons.

pgp trust --keyId 0xBF0451C0
download accept terms of use
addon install bundle --bundleSymbolicName com.vaadin.spring.roo.addon

Once this is done, you can now start using the Spring Roo Vaadin addon. Issue the
following command to have the Roo addon generate scaffolding for our entities, in the
same way that we used the MVC and GWT addons to generate scaffolding.

vaadin setup --applicationPackage ~.web --baseName crm --themeName crm --
useJpaContainer false

This will install Vaadin, add the required Java dependencies, update web.xml, etc. It
installs some helper and utility code in the com.crmco.crm.web package. Inspect that
package and you’ll see a handful of classes, a far cry from the reams of code implanted
by the GWT addon. Let’s see what Vaadin can do for us in terms of scaffolding. Run
the following command to generate CRUD forms.

vaadin generate all --package ~.web.ui --visuallyComposable true

40 | Chapter 2: Spring Roo on the Web

http://web.xml

Figure 2-11. Vaadin crm

The generated Vaadin application is pretty striking, and doesn’t take a lot of code!
Vaadin also has a visual designer that you can use. You need to add the Vaadin Eclipse
plugin to SpringSource Tool Suite. In SpringSource Tool Suite, go to Help > Install
New Software, and in the “Work With:” field, enter the URL of the Vaadin Eclipse
update site, http://vaadin.com/eclipse. Select the “Vaadin” tree, and install everything.
Follow the prompts. Once everything’s configured, you can open any Vaadin form in
the Vaadin visual designer. Right click on the com.crmco.crm.web.ui.CartOrderForm,
choose Open With > Vaadin Editor. If you find yourself looking at source code, then
look at the bottom of the editor pane and click on the Design tab. You should be shown
a visual approximation of the design, just as with the GWT designer. You can select
elements and modify them in the visual tool, as well.

Integrating Roo with other Web Frameworks | 41

http://vaadin.com/eclipse

Figure 2-12. Vaadin visual designer

Where to go from Here
While we haven’t covered all the supported technologies, there are numerous other
addons that support Flex, Wicket, and many other technologies.

Many of these technologies—like Flex, GWT, and Vaadin—are geared specifically to
form-intensive, rich-client-type applications, and not to being a general purpose web
framework like Spring MVC. We think you’ll find that most applications are best served
by introducing Spring MVC (and perhaps Spring WebFlow) as the base, and then—as
islands of richer, page-centric functionality are required—by introducing something
like Vaadin.

42 | Chapter 2: Spring Roo on the Web

CHAPTER 3

From Prototype to Production

If you’ve got this far, then you already have a working application with a working entity
model as well as a powerful, tried and true web framework. You’ve got everything you
need to take your application well past the prototype stages and develop it into a viable,
production worthy application. The devil, as they say, is in the details. But fear not,
Spring Roo can make short work of these tedious, but important, tasks.

In this chapter, we’ll look at testing, securing and logging.

Logging
Logging is an integral part of your application. It provides the normative connection
between your application and the rest of the world, during debugging, in testing, and
in production. Logging should be integrated as frequently as possible. Spring Roo
comes with the Log4j dependency already enabled. With one command you can install
a Log4j configuration file, log4j.properties.

logging setup --level INFO

would for sample install a configuration file setup to handle logging at the INFO debug
level.

Security
Ben Alex, the creator of both the Spring Security project and of Spring Roo, joked
famously about the progression of the configuration required to add Spring Security
configuration to a Spring application. In earlier versions of SPring Security—which was
released as Acegi Security in 2003—the configuration could be quite burdensome. To-
day, Spring Security provides a XML namespace as well as intelligent configuration
options and factory beans, making its installation a trivial matter. However, it can be
simpler. As Ben would note, Spring Roo reduces the required configuration to one,
solitary line.

43

Spring Security is widely considered the most powerful security framework available
to Java developers. It has a lot of power, and can readily meet most security challenges.
Spring Roo provides a sane way to get the basics taken care of, quickly. For our pur-
poses, we simply want to secure our web application.

You must have configured a Spring MVC application, otherwise the security commands
will not be available on the shell. To get started, type:

security setup

This command packs a lot of punch. It’s added the appropriate Spring Security Maven
dependencies to the pom.xml file, it’s added a new Spring configuration file (src/main/
resources/META-INF/spring/applicationContext-security.xml), it’s added a
login.jspx page, and a new Tiles definition (view.xml). It’s also added the Spring Se-
curity servlet to web.xml, and configured extra URL protection in webmvc-config.xml.

The salient configuration lives in the applicationContext-security.xml, presented be-
low.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns="http://www.springframework.org/schema/security"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/security http://www.springframework.org/
schema/security/spring-security-3.0.xsd">

 <!-- HTTP security configurations -->
 <http auto-config="true" use-expressions="true">
 <form-login login-processing-url="/resources/j_spring_security_check" login-
page="/login" authentication-failure-url="/login?login_error=t"/>
 <logout logout-url="/resources/j_spring_security_logout"/>
 <!-- Configure these elements to secure URIs in your application -->
 <intercept-url pattern="/choices/**" access="hasRole('ROLE_ADMIN')"/>
 <intercept-url pattern="/member/**" access="isAuthenticated()" />
 <intercept-url pattern="/resources/**" access="permitAll" />
 <intercept-url pattern="/**" access="permitAll" />
 </http>

 <!-- Configure Authentication mechanism -->
 <authentication-manager alias="authenticationManager">
 <!-- SHA-256 values can be produced using 'echo -n your_desired_password |
sha256sum' (using normal *nix environments) -->
 <authentication-provider>
 <password-encoder hash="sha-256"/>
 <user-service>
 <user name="admin"
password="8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918"
authorities="ROLE_ADMIN"/>
 <user name="user"
password="04f8996da763b7a969b1028ee3007569eaf3a635486ddab211d512c85b9df8fb"
authorities="ROLE_USER"/>
 </user-service>

44 | Chapter 3: From Prototype to Production

http://web.xml

 </authentication-provider>

 </authentication-manager>
</beans:beans>

The http element describes which roles may access which URLs. The access attribute
on the intercept-url elements uses Spring Expression Language statements to specify
which tests to run when unauthorized access is requested. Questions about the quali-
fications of a request are delegated to an authentication-manager, which you can see
configured below. Like all things in Spring, the authentication-manager is pluggable
through an SPI. For the common cases, the namespace provides help. You can, for
example, configure authentication against a database, or a single-sign on system like
CAS, or OpenSSO.

Once this configuration is in place, you can more granularly restrict access to specific
fragments of pages. For example, you might wish to restrict which menu options are
shown to people in the menu. Open up the menu.jspx page, and then add the JSP tag
namespace for the Spring Security tag.

 xmlns:sec="http://www.springframework.org/security/tags"

For the specific parts of the page that you wish to restrict, enclose it with this new tag,
like this:

<sec:authorize ifAllGranted="ROLE_ADMIN">
 ...
</sec:authorize>

With these simple changes, we’ve already introduced URL-security, login managment,
and page-fragment security. A full introduction to Spring Security is out of the scope
of this book, but you might consider consulting the excellent Spring Security docu-
mentation at http://static.springsource.org/spring-security/site/index.html, or the excel-
lent PACKT book, Spring Security 3.

Testing
We’ve gotten very far, very quickly, because we’ve relied on Spring Roo to do the right
thing (TM). Since it does, unfailingly, we haven’t had to worry about testing, thus far.
But Spring Roo is very amenable to testing, it encourages it. Spring Roo fully supports
round tripping and wants to make it as easy as possible to support testing code so that
—as we introduce code that varies from the script, so to speak, we don’t risk intro-
ducing errors.

When creating entities, you can eaisly add integration tests for the created entities by
appending the --testAutomatically to the command, like this:

entity --class ~.domain.Customer --testAutomatically

You can add the integration tests retroactively, too, if you forget to specify this option
at creation time or you had the classes generated using database reverse engineering.

Testing | 45

http://static.springsource.org/spring-security/site/index.html

test integration --entity ~.domain.Customer

This will generate an integration test (src/test/java/com/crmco/crm/domain/Customer
IntegrationTest.java). This integration test is a standard unit test. There’s an adjacent
unit test aspect, CustomerIntegrationTest_Roo_IntegrationTest, that contains unit
tests for all the properties on the entity, as well as the finder methods.

You can easily generate unit tests for all the other entities. You can run the unit tests
in SpringSource Tool Suite by right clicking on the unit test and selecting Run As >
JUnit Test. When you build the code on the command line using Maven, the unit tests
will be run automatically.

Integration tests are the most typical type of unit test, but not the only one. Roo also
supports mock tests, as well as interaction testing with Selenium.

Mock testing describes the practice—nay, the art—of testing interactions between APIs
by delegating API calls to dumb objects that record the interactions and check that they
meet test expectations. You can create simple mock test, quickly, like this:

test mock

This will create a single mock test, which you can then build on.

Interface testing—the final frontier in unit testing—is one of the hardest types of testing
to get right, and also one of the most worthwhile because the user interface layer in an
application can be host to a lot of complex state management. A user interface also has
a lot of logic that is business critical, and that is not served by traditional unit tests.
Interface tests provide an effective way to test this logic by simulating user interactions
and measuring that the behavior of the user interface is in accordance with the expected
behavior.

There are several projects that provide support for these kinds of tests, including
HttpUnit, HtmlUnit, and Selenium. The first two frameworks simulate requests against
a web application in terms of HTTP requests (very low level) and in terms of manipu-
lation of a web page’s document object model (mouse clicks, button presses, etc.).
While HtmlUnit has a lot of potential, it is ultimately a Java simulation of the browser,
not the browser itself. Selenium is different. Selenium works as a plugin in the various
browsers and then surfaces a sophisticated API to “drive” the browser using those
plugins. It should not be surprising then that Spring Roo makes it very simple to build
Selenium tests.

Roo can generate your Selenium test for any controller, like this:

selenium test --controller ~.web.CustomerController

This modifies the Maven configuration for the project and installs support for the
Maven plugin:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>selenium-maven-plugin</artifactId>
 <version>1.1</version>

46 | Chapter 3: From Prototype to Production

 <configuration>
 <suite>src/main/webapp/selenium/test-suite.xhtml</suite>
 <browser>*firefox</browser>
 <results>${project.build.directory}/selenium.html</results>
 <startURL>http://localhost:4444/</startURL>
 </configuration>
</plugin>

This will generate tests for the controller in the src/main/webapp/selenium folder. You
can run these tests through Maven using the following command:

mvn selenium:selenese

This will launch Firefox and run the tests for you.

Conclusion
Well, that brings us to the end of our hopping tour of Spring Roo. In the span of the
wafer thin tome you hold in your hands, we’ve covered setting up a Spring application
and working Maven build, addressing database persistence with JPA and Neo4j, build-
ing web applications using—among other things—Spring MVC, Spring WebFlow,
GWT, and Vaadin, securing an application and testing an application. Imagine what
we could do if we had written another ten pages!

We hope you’ve enjoyed this little tour, but don’t worry—the fun doesn’t stop here. If
you want to learn more, we encourage you to check out http://www.springsource.org/
roo, where you’ll find all sorts of information including documentation, tutorials,
screencasts and news. Spring Roo’s a quickly growing project, with new features added
by the development team as well as the numerous third party contributors. If Spring
Roo doesn’t already have a feature that you need, then check back tomorrow! If it hasn’t
been addressed by then, then we encourage you to consult the forums as well as the
JIRA for the project. The Roo team heavily prioritizes community feedback in deciding
what to add next and always welcomes feedback.

Finally, if you want to learn more about the many individual technologies we’ve dis-
cussed in this book, hop on over to the SpringSource web site (http://www.springsource
.org). SpringSource also has a YouTube channel, at http://www.youtube.com/Spring
SourceDev.

Finally, you can find your humble authors on Twitter! Follow @SpringSource, @star-
buxman, and @smayzak.

Conclusion | 47

http://www.springsource.org/roo
http://www.springsource.org/roo
http://www.springsource.org
http://www.springsource.org
http://www.youtube.com/SpringSourceDev
http://www.youtube.com/SpringSourceDev
http://www.twitter.com/SpringSource
http://www.twitter.com/starbuxman
http://www.twitter.com/starbuxman
http://www.twitter.com/smayzak

About the Authors
Josh Long is the Spring developer advocate for SpringSource, a division of VMWare;
an editor on the Java queue for InfoQ.com; and the lead author on several books,
including Apress’ Spring Recipes, 2nd Edition. He is also a contributor to several open
source projects, including Spring Integration, Spring Batch, Spring Hadoop, and the
Activiti BPMN 2 project. Josh has spoken at many different industry conferences in-
ternationally including TheServerSide Java Symposium, SpringOne, OSCON, Java-
Zone, Devoxx, Java2Days and many others. When he’s not hacking on code for Spring-
Source, he can be found at the local Java User Group or at the local coffee shop. Josh
likes solutions that push the boundaries of the technologies that enable them. His in-
terests include cloud computing (especially, CloudFoundry), scalability, BPM, grid
processing, mobile computing and so-called “smart” systems. He blogs at blog.spring-
source.org or joshlong.com.

Mr. Mayzak is part of the Cloud Applications Platform team at VMware. As part of this
team he is focused on mapping our solutions to customers needs and ensuring that
what we offer fits their requirements. He is constantly in the field working with cus-
tomers on their Cloud initiatives.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments

	Chapter 1. Your First Intrepid Hops … err, Steps
	The Pitch
	Spring, the Most Productive Way to Build Java Applications
	A Worthy Alternative
	Spring Roo Means No Compromises

	Getting Started
	The Tooling
	Our first Spring Roo application
	Database Reverse Engineering
	Riddle Me This
	On The (Active) Record

	Persistence with Spring Data Graph

	Chapter 2. Spring Roo on the Web
	Spring MVC
	Taking Our Application for a Spin
	“You Win … a Braaand Neeew Web Application!”
	Scaffolding
	How Spring Roo Builds the Scaffolding
	Spring WebFlow

	Integrating Roo with other Web Frameworks
	GWT
	Vaadin
	Where to go from Here

	Chapter 3. From Prototype to Production
	Logging
	Security
	Testing
	Conclusion

